Modulation of basal and postischemic leukocyte-endothelial adherence by nitric oxide.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Recent studies indicate that leukocytes are important contributors to secondary vascular and parenchymal injury after cerebral ischemia. The present study was undertaken to define nitric oxide (NO)-based mechanisms that regulate leukocyte-endothelial interactions in the cerebral vasculature, how these mechanisms are affected by cerebral ischemia, and whether NO-based therapies can affect postischemic leukocyte dynamics. METHODS Leukocyte adherence to pial venules of anesthetized newborn piglets was quantified by in situ fluorescence videomicroscopy through closed cranial windows during basal conditions and during reperfusion after 9 minutes of asphyxia. Nitric oxide synthase (NOS) was inhibited by local window superfusion of L-nitroarginine; superfusion of sodium nitroprusside was used to donate NO. RESULTS Local inhibition of NOS under resting conditions increased leukocyte-endothelial adherence 2.2-fold and 3.9-fold over baseline values after 1 hour and 2 hours, respectively; this response was completely blocked by cosuperfusion with L-arginine. Cosuperfusion of superoxide dismutase reversed L-nitroarginine-induced leukocyte adherence by 89% and 63% at these respective time points. The extent of acute leukocyte adherence elicited by NOS inhibition was similar in magnitude to that observed during the initial 2 hours of reperfusion after asphyxia. Leukocyte adherence was not additionally increased in asphyxic animals treated with L-nitroarginine. Sodium nitroprusside robustly inhibited asphyxia-induced leukocyte adherence back to control levels. CONCLUSIONS NO exerts a tonic antiadherent effect in the cerebral microcirculation by inactivation of adherence-promoting superoxide radical formation. Cerebral ischemia is associated with an inhibition of NOS or lower levels of NO, which results in leukocyte-endothelial adherence that can be prevented by NO donors. The latter may be useful therapeutically to prevent the purported vascular and parenchymal dysfunction and injury caused by activated leukocytes in ischemic brain.
منابع مشابه
Expedited Publications MXodulation of Ischemia/Reperfusion-Induced Microvascular Dysfunction by Nitric Oxide
Leukocyte-endothelial cell adhesion and an altered metabolism of endothelial cell-derived nitric oxide (NO) have been implicated in the microvascular dysfunction associated with ischemia/reperfusion (I/R). The objective of this study was to determine whether NO donors can attenuate the reperfusion-induced increase in venular albumin leakage via an effect on leukocyte-endothelial cell adhesion. ...
متن کاملHIGHLIGHTED TOPIC Oxygen Sensing in Health and Disease Cerebrovascular inflammation after brief episodic hypoxia: modulation by neuronal and endothelial nitric oxide synthase
Altay, Tamer, Ernesto R. Gonzales, T. S. Park, and Jeffrey M. Gidday. Cerebrovascular inflammation after brief episodic hypoxia: modulation by neuronal and endothelial nitric oxide synthase. J Appl Physiol 96: 1223–1230, 2004; 10.1152/japplphysiol.00798.2003.— Obstructive sleep apnea, apnea of prematurity, and sudden infant death syndrome are associated with a high risk of morbidity and mortali...
متن کاملHypoxia causes leukocyte adherence to mesenteric venules in nonacclimatized, but not in acclimatized, rats.
Although the effects of ischemia-reperfusion have received considerable attention, few studies have directly evaluated the microcirculatory response to systemic hypoxia. The overall objective of this study was to assess the effect of environmental hypoxia on adhesive interactions of circulating leukocytes with rat mesenteric venules by using intravital microscopy. Experiments were designed to 1...
متن کاملThe microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion.
The accumulation of leukocytes in inflamed tissue results from adhesive interactions between leukocytes and endothelial cells within the microcirculation. These adhesive interactions and the excessive filtration of fluid and protein that accompanies an inflammatory response are largely confined to one region of the microvasculature: postcapillary venules. The nature and magnitude of the leukocy...
متن کاملEffect of endogenous nitric oxide on cardiac ischemic preconditioning in rat
Introduction: Ischemic Preconditioning (IPC) is the phenomen that happens on the heart by one or several short periods of ischemia followed by reperfusion that improve the postischemic recovery of mechanical function. Ischemic preconditioning (IPC) may protect the heart from ischemia reperfusion injury by nitric oxide formation. This study investigated the effect of ischemic preconditioni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 29 7 شماره
صفحات -
تاریخ انتشار 1998